Data mining : (Record no. 50355)

000 -LEADER
fixed length control field 07283cam a2200397 i 4500
001 - CONTROL NUMBER
control field 19184960
003 - CONTROL NUMBER IDENTIFIER
control field CITU
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230925123943.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 160721s2017 mau b 001 0 eng
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2016948470
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780128042915
040 ## - CATALOGING SOURCE
Original cataloging agency DLC
Language of cataloging eng
Description conventions rda
Transcribing agency DLC
042 ## - AUTHENTICATION CODE
Authentication code pcc
050 00 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA76.9.D343
Item number W58 2017
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 006.312
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Witten, I. H. (Ian H.)
Relator term author.
245 00 - TITLE STATEMENT
Title Data mining :
Remainder of title practical machine learning tools and techniques /
Statement of responsibility, etc. Ian H. Witten, Eibe Frank, Mark A. Hall, Christopher J. Pal.
250 ## - EDITION STATEMENT
Edition statement Fourth Edition.
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture Cambridge, MA;
-- Amsterdam :
Name of producer, publisher, distributor, manufacturer Morgan Kaufmann,
Date of production, publication, distribution, manufacture, or copyright notice [2017]
264 #4 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Date of production, publication, distribution, manufacture, or copyright notice c2017
300 ## - PHYSICAL DESCRIPTION
Extent xxxii, 621 pages ;
Dimensions 24 cm
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term unmediated
Media type code n
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term volume
Carrier type code nc
Source rdacarrier
500 ## - GENERAL NOTE
General note Rev. edition of: Data mining : practical machine learning tools and techniques / Ian H. Witten, Eibe Frank, Mark A. Hall. c2013.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Includes bibliographical references (pages 573-601) and index.
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note Table of Contents<br/><br/>Part I: Introduction to data mining<br/><br/>Chapter 1. What?s it all about?<br/><br/> Abstract<br/> 1.1 Data Mining and Machine Learning<br/> 1.2 Simple Examples: The Weather Problem and Others<br/> 1.3 Fielded Applications<br/> 1.4 The Data Mining Process<br/> 1.5 Machine Learning and Statistics<br/> 1.6 Generalization as Search<br/> 1.7 Data Mining and Ethics<br/> 1.8 Further Reading and Bibliographic Notes<br/><br/>Chapter 2. Input: Concepts, instances, attributes<br/><br/> Abstract<br/> 2.1 What?s a Concept?<br/> 2.2 What?s in an Example?<br/> 2.3 What?s in an Attribute?<br/> 2.4 Preparing the Input<br/> 2.5 Further Reading and Bibliographic Notes<br/><br/>Chapter 3. Output: Knowledge representation<br/><br/> Abstract<br/> 3.1 Tables<br/> 3.2 Linear Models<br/> 3.3 Trees<br/> 3.4 Rules<br/> 3.5 Instance-Based Representation<br/> 3.6 Clusters<br/> 3.7 Further Reading and Bibliographic Notes<br/><br/>Chapter 4. Algorithms: The basic methods<br/><br/> Abstracts<br/> 4.1 Inferring Rudimentary Rules<br/> 4.2 Simple Probabilistic Modeling<br/> 4.3 Divide-and-Conquer: Constructing Decision Trees<br/> 4.4 Covering Algorithms: Constructing Rules<br/> 4.5 Mining Association Rules<br/> 4.6 Linear Models<br/> 4.7 Instance-Based Learning<br/> 4.8 Clustering<br/> 4.9 Multi-instance Learning<br/> 4.10 Further Reading and Bibliographic Notes<br/> 4.11 Weka Implementations<br/><br/>Chapter 5. Credibility: Evaluating what?s been learned<br/><br/> Abstract<br/> 5.1 Training and Testing<br/> 5.2 Predicting Performance<br/> 5.3 Cross-Validation<br/> 5.4 Other Estimates<br/> 5.5 Hyperparameter Selection<br/> 5.6 Comparing Data Mining Schemes<br/> 5.7 Predicting Probabilities<br/> 5.8 Counting the Cost<br/> 5.9 Evaluating Numeric Prediction<br/> 5.10 The MDL Principle<br/> 5.11 Applying the MDL Principle to Clustering<br/> 5.12 Using a Validation Set for Model Selection<br/> 5.13 Further Reading and Bibliographic Notes<br/><br/>Part II: More advanced machine learning schemes<br/><br/>Chapter 6. Trees and rules<br/><br/> Abstract<br/> 6.1 Decision Trees<br/> 6.2 Classification Rules<br/> 6.3 Association Rules<br/> 6.4 Weka Implementations<br/><br/>Chapter 7. Extending instance-based and linear models<br/><br/> Abstract<br/> 7.1 Instance-Based Learning<br/> 7.2 Extending Linear Models<br/> 7.3 Numeric Prediction With Local Linear Models<br/> 7.4 Weka Implementations<br/><br/>Chapter 8. Data transformations<br/><br/> Abstracts<br/> 8.1 Attribute Selection<br/> 8.2 Discretizing Numeric Attributes<br/> 8.3 Projections<br/> 8.4 Sampling<br/> 8.5 Cleansing<br/> 8.6 Transforming Multiple Classes to Binary Ones<br/> 8.7 Calibrating Class Probabilities<br/> 8.8 Further Reading and Bibliographic Notes<br/> 8.9 Weka Implementations<br/><br/>Chapter 9. Probabilistic methods<br/><br/> Abstract<br/> 9.1 Foundations<br/> 9.2 Bayesian Networks<br/> 9.3 Clustering and Probability Density Estimation<br/> 9.4 Hidden Variable Models<br/> 9.5 Bayesian Estimation and Prediction<br/> 9.6 Graphical Models and Factor Graphs<br/> 9.7 Conditional Probability Models<br/> 9.8 Sequential and Temporal Models<br/> 9.9 Further Reading and Bibliographic Notes<br/> 9.10 Weka Implementations<br/><br/>Chapter 10. Deep learning<br/><br/> Abstract<br/> 10.1 Deep Feedforward Networks<br/> 10.2 Training and Evaluating Deep Networks<br/> 10.3 Convolutional Neural Networks<br/> 10.4 Autoencoders<br/> 10.5 Stochastic Deep Networks<br/> 10.6 Recurrent Neural Networks<br/> 10.7 Further Reading and Bibliographic Notes<br/> 10.8 Deep Learning Software and Network Implementations<br/> 10.9 WEKA Implementations<br/><br/>Chapter 11. Beyond supervised and unsupervised learning<br/><br/> Abstract<br/> 11.1 Semisupervised Learning<br/> 11.2 Multi-instance Learning<br/> 11.3 Further Reading and Bibliographic Notes<br/> 11.4 WEKA Implementations<br/><br/>Chapter 12. Ensemble learning<br/><br/> Abstract<br/> 12.1 Combining Multiple Models<br/> 12.2 Bagging<br/> 12.3 Randomization<br/> 12.4 Boosting<br/> 12.5 Additive Regression<br/> 12.6 Interpretable Ensembles<br/> 12.7 Stacking<br/> 12.8 Further Reading and Bibliographic Notes<br/> 12.9 WEKA Implementations<br/><br/>Chapter 13. Moving on: applications and beyond<br/><br/> Abstract<br/> 13.1 Applying Machine Learning<br/> 13.2 Learning From Massive Datasets<br/> 13.3 Data Stream Learning<br/> 13.4 Incorporating Domain Knowledge<br/> 13.5 Text Mining<br/> 13.6 Web Mining<br/> 13.7 Images and Speech<br/> 13.8 Adversarial Situations<br/> 13.9 Ubiquitous Data Mining<br/> 13.10 Further Reading and Bibliographic Notes<br/> 13.11 WEKA Implementations<br/><br/>Appendix A. Theoretical foundations<br/><br/> A.1 Matrix Algebra<br/> A.2 Fundamental Elements of Probabilistic Methods<br/><br/>Appendix B. The WEKA workbench<br/><br/> B.1 What?s in WEKA?<br/> B.2 The package management system<br/> B.3 The Explorer<br/> B.4 The Knowledge Flow Interface<br/> B.5 The Experimenter
520 ## - SUMMARY, ETC.
Summary, etc. Description<br/><br/>Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.<br/><br/>Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research. View more ><br/>Key Features<br/><br/> Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects<br/> Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods<br/> Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface<br/> Includes open-access online courses that introduce practical applications of the material in the book
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Data mining.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Frank, Eibe
Relator term author
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Hall, Mark A.
Relator term author
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Pal, Christopher J.
Dates associated with a name author
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN)
a 7
b cbc
c orignew
d 2
e epcn
f 20
g y-gencatlg
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Koha item type BOOK
Koha issues (borrowed), all copies 2
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Shelving location Date acquired Source of acquisition Cost, normal purchase price Inventory number Total Checkouts Full call number Barcode Date last seen Date last checked out Price effective from Koha item type Copy number
          COLLEGE LIBRARY COLLEGE LIBRARY SUBJECT REFERENCE 2017-09-16 ALBASA 4995.00 48000 1 006.312 W784 2017 CITU-CL-48000 2023-10-02 2023-09-25 2020-10-06 BOOK  
          COLLEGE LIBRARY COLLEGE LIBRARY SUBJECT REFERENCE 2017-09-16 ALBASA 629.00 48165 1 006.312 W784 2017 CITU-CL-48165 2023-10-06 2023-09-25 2020-10-06 BOOK c.2