Machine learning : (Record no. 58839)

000 -LEADER
fixed length control field 16464cam a2200349 a 4500
001 - CONTROL NUMBER
control field 15630216
003 - CONTROL NUMBER IDENTIFIER
control field CITU
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20230925121213.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 090219s2009 flua b 001 0 eng
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2009007292
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781420067187 (hardcover : alk. paper)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1420067184 (hardcover : alk. paper)
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)ocn156812741
040 ## - CATALOGING SOURCE
Original cataloging agency DLC
Transcribing agency DLC
Modifying agency BTCTA
-- BAKER
-- YDXCP
-- YDX
-- C#P
-- CDX
-- BWX
-- DLC
050 00 - LIBRARY OF CONGRESS CALL NUMBER
Classification number Q325.5
Item number .M368 2009
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 006.3/1
Edition number 22
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Marsland, Stephen.
245 10 - TITLE STATEMENT
Title Machine learning :
Remainder of title an algorithmic perspective /
Statement of responsibility, etc. Stephen Marsland.
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Boca Raton :
Name of publisher, distributor, etc. CRC Press,
Date of publication, distribution, etc. c2009.
300 ## - PHYSICAL DESCRIPTION
Extent xvi, 390 p. :
Other physical details ill. ;
Dimensions 25 cm.
490 1# - SERIES STATEMENT
Series statement Chapman & Hall/CRC machine learning & pattern recognition series
500 ## - GENERAL NOTE
General note "A Chapman & Hall book."
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Includes bibliographical references and index.
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note 1 Introduction 1<br/>1.1 If Data Had Mass, the Earth Would Be a Black Hole . . .. 2<br/>1.2 Learning . ............................ 4<br/>1.2.1 Machine Learning ................. ... 5<br/>1.3 Types of Machine Learning ................... 6<br/>1.4 Supervised Learning ....................... 7<br/>1.4.1 Regression ................... ...... 8<br/>1.4.2 Classification ....................... 9<br/>1.5 The Brain and the Neuron ................... 11<br/>1.5.1 Hebb's Rule ........ ............... 12<br/>1.5.2 McCulloch and Pitts Neurons . ............ 13<br/>1.5.3 Limitations of the McCulloch and Pitt Neuronal Model 15<br/>Further Reading . ........................... 16<br/>2 Linear Discriminants 17<br/>2.1 Preliminaries ........................... 18<br/>2.2 The Perceptron ................... ...... 19<br/>2.2.1 The Learning Rate rj ................... 21<br/>2.2.2 The Bias Input ................... ... 22<br/>2.2.3 The Perceptron Learning Algorithm . ......... 23<br/>2.2.4 An Example of Perceptron Learning . ......... 24<br/>2.2.5 Implementation ................... ... 26<br/>2.2.6 Testing the Network . .................. 31<br/>2.3 Linear Separability ................... .... 32<br/>2.3.1 The Exclusive Or (XOR) Function . .......... 34<br/>2.3.2 A Useful Insight ................... .. 36<br/>2.3.3 Another Example: The Pima Indian Dataset .... . 37<br/>2.4 Linear Regression ............ ........... 41<br/>2.4.1 Linear Regression Examples . .............. 43<br/>Further Reading ................... ....... .. 44<br/>Practice Questions ................... ...... . 45<br/>3 The Multi-Layer Perceptron 47<br/>3.1 Going Forwards ................ .......... 49<br/>3.1.1 Biases .............. ..... ...... . 50<br/>3.2 Going Backwards: Back-Propagation of Error . ....... 50<br/>3.2.1 The Multi-Layer Perceptron Algorithm . . .. .... 54<br/>3.2.2 Initialising the Weights . ...... .......... 57<br/>3.2.3 Different Output Activation Functions ... . ...... 58<br/>3.2.4 Sequential and Batch Training . ............ 59<br/>3.2.5 Local Minima . .......... . . ... . 60<br/>3.2.6 Picking Up Momentum ......... ....... 61<br/>3.2.7 Other Improvements . .................. 62<br/>3.3 The Multi-Layer Perceptron in Practice . ........... 63<br/>3.3.1 Data Preparation .... ................ 63<br/>3.3.2 Amount of Training Data . ............... 63<br/>3.3.3 Number of Hidden Layers . ............... 64<br/>3.3.4 Generalisation and Overfitting . ............ 66<br/>3.3.5 Training, Testing, and Validation . ........... 66<br/>3.3.6 When to Stop Learning ... .............. 68<br/>3.3.7 Computing and Evaluating the Results . ....... 69<br/>3.4 Examples of Using the MLP .................. 70<br/>3.4.1 A Regression Problem ... .... ........... 70<br/>3.4.2 Classification with the MLP . .............. 74<br/>3.4.3 A Classification Example .. . . . . . . ........ . 75<br/>3.4.4 Time-Series Prediction . . .. .. . . ....... . 77<br/>3.4.5 Data Compression: The Auto-Associative Network . 80<br/>3.5 Overview ................. ........... ..83<br/>3.6 Deriving Back-Propagation ................... 84<br/>3.6.1 The Network Output and the Error . . ..... ... 884<br/>3.6.2 The Error of the Network ..... ....... . . 85<br/>3.6.3 A Suitable Activation Function . ........... 87<br/>3.6.4 Back-Propagation of Error . ......... . .. . . 88<br/>Further Reading ...... .. . . .......... ... . 90<br/>Practice Questions . . . . . . ............... ... ... 91<br/>4 Radial Basis Functions and Splines 95<br/>4.1 Concepts ................. ......... .. 95<br/>4.1.1 Weight Space ......... ............. 95<br/>4.1.2 Receptive Fields . ....... .... .. .. . . 97<br/>4.2 The Radial Basis Function (RBF" Network . ......... 100<br/>4.2.1 Training the RBF Network . ......... . . . 103<br/>4.3 The Curse of Dimensionality .... ........... . . 106<br/>4.4 Interpolation and Basis Functions ... .... ........ 108<br/>4.4.1 Bases and Basis Expansion ............ ... 108<br/>4.4.2 The Cubic Spline . ... ................ 112<br/>4.4.3 Fitting the Spline to the Data ........ ....... 112<br/>4.4.4 Smoothing Splines .... ................ 113<br/>4.4.5 Higher Dimensions ...... ... ........... 114<br/>4.4.6 Beyond the Bounds ................... . 116<br/>Further Reading ................... .... ... . 116<br/>Practice Questions ................... ........ 117<br/>5 Support Vector Machines 119<br/>5.1 Optimal Separation ............. ......... 120<br/>5.2 Kernels .... ....... . ................... 125<br/>5.2.1 Example: XOR .. ................... . 128<br/>5.2.2 Extensions to the Support Vector Machine . . .... 128<br/>Further Reading ................... ....... . 130<br/>Practice Questions .... . .. ........ .. .......... 131<br/>6 Learning with Trees 133<br/>6.1 Using Decision Trees ............ . ........ 133<br/>6.2 Constructing Decision Trees . ................. 134<br/>6.2.1 Quick Aside: Entropy in Information Theory .... . 135<br/>6.2.2 ID3 ...... ......... ... ......... 136<br/>6.2.3 Implementing Trees and Graphs in Python ...... 139<br/>6.2.4 Implementation of the Decision Tree . ......... 140<br/>6.2.5 Dealing with Continuous Variables .......... . 143<br/>6.2.6 Computational Complexity . .............. 143<br/>6.3 Classification and Regression Trees (CART) . ........ 145<br/>6.3.1 Gini Impurity ................... .. . 146<br/>6.3.2 Regression in Trees .................. .. 147<br/>6.4 Classification Example ........ ............. 147<br/>Further Reading .... ................... .. . . 150<br/>Practice Questions ................... ........ 151<br/>7 Decision by Committee: Ensemble Learning 153<br/>7.1 Boosting ................ .......... ..154<br/>7.1.1 AdaBoost ......... . ................ 155<br/>7.1.2 Stumping ......... ................. 160<br/>7.2 Bagging .............................. 160<br/>7.2.1 Subagging ................... ...... 162<br/>7.3 Different Ways to Combine Classifiers . ............ . 162<br/>Further Reading ................... ....... .. 164<br/>Practice Questions ................... ........ 165<br/>8 Probability and Learning 167<br/>8.1 Turning Data into Probabilities . ............... 167<br/>8.1.1 Minimising Risk . ........ ........ ... 171<br/>8.1.2 The Naive Bayes' Classifier . .............. 171<br/>8.2 Some Basic Statistics ................ ...... 173<br/>8.2.1 Averages ......................... 173<br/>8.2.2 Variance and Covariance . ................ 174<br/>8.2.3 The Gaussian ................... .... 176<br/>8.2.4 The Bias-Variance Tradeoff .. .............. 177<br/>8.3 Gaussian Mixture Models ................... . 178<br/>8.3.1 The Expectation-Maximisation (EM) Algorithm . . . 179<br/>8.4 Nearest Neighbour Methods . ................. 183<br/>8.4.1 Nearest Neighbour Smoothing . ............. 185<br/>8.4.2 Efficient Distance Computations: the KD-Tree . . . . 186<br/>8.4.3 Distance Measures ................... . 190<br/>Further Reading ................... ......... 192<br/>Practice Questions ....... .......... ........ 193<br/>9 Unsupervised Learning 195<br/>9.1 The k-Means Algorithm ................... .. 196<br/>9.1.1 Dealing with Noise ........ ............ 200<br/>9.1.2 The k-Means Neural Network . ............. 200<br/>9.1.3 Normalisation ................... .... 202<br/>9.1.4 A Better Weight Update Rule ............. . 203<br/>9.1.5 Example: The Iris Dataset Again ...... ...... 204<br/>9.1.6 Using Competitive Learning for Clustering ...... 205<br/>9.2 Vector Quantisation ....................... 206<br/>9.3 The Self-Organising Feature Map . .............. 207<br/>9.3.1 The SOM Algorithm . .................. 210<br/>9.3.2 Neighbourhood Connections . ............. 211<br/>9.3.3 Self-Organisation ................... .. 214<br/>9.3.4 Network Dimensionality and Boundary Conditions . 214<br/>9.3.5 Examples of Using the SOM . ............. 215<br/>Further Reading ................... ......... 218<br/>Practice Questions ................... ........ 220<br/>10 Dimensionality Reduction 221<br/>10.1 Linear Discriminant Analysis (LDA) . ............. 223<br/>10.2 Principal Components Analysis (PCA) . ........... 226<br/>10.2.1 Relation with the Multi-Layer Perceptron ....... 231<br/>10.2.2 Kernel PCA ................... ..... 232<br/>10.3 Factor Analysis ................... ...... 234<br/>10.4 Independent Components Analysis (ICA) . .......... 237<br/>10.5 Locally Linear Embedding . .................. 239<br/>10.6 Isomap .......... ................. 242<br/>10.6.1 Multi-Dimensional Scaling (MDS) .......... . 242<br/>Further Reading ................. ......... .. 245<br/>Practice Questions ................... ...... . 246<br/>11 Optimisation and Search 247<br/>11.1 Going Downhill ........................... 248<br/>11.2 Least-Squares Optimisation ........ ............ 251<br/>11.2.1 Taylor Expansion ................... .. 251<br/>11.2.2 The Levenberg-Marquardt Algorithm . ........ 252<br/>11.3 Conjugate Gradients ................... .... 257<br/>11.3.1 Conjugate Gradients Example . ............ 260<br/>11.4 Search: Three Basic Approaches . ............... 261<br/>11.4.1 Exhaustive Search . ................... 261<br/>11.4.2 Greedy Search ................... ... 262<br/>11.4.3 Hill Climbing ................... .. . 262<br/>11.5 Exploitation and Exploration . ................. 264<br/>11.6 Simulated Annealing .. .................... 265<br/>11.6.1 Comparison ................... ..... 266<br/>Further Reading . ........ ................... 267<br/>Practice Questions ................... ........ 267<br/>12 Evolutionary Learning 269<br/>12.1 The Genetic Algorithm (GA) ........... ..... . 270<br/>12.1.1 String Representation . ................. 271<br/>12.1.2 Evaluating Fitness ................... . 272<br/>12.1.3 Population ... ..................... 273<br/>12.1.4 Generating Offspring: Parent Selection . ........ 273<br/>12.2 Generating Offspring: Genetic Operators . .......... 275<br/>12.2.1 Crossover ......................... 275<br/>12.2.2 Mutation . ........................ 277<br/>12.2.3 Elitism, Tournaments, and Niching . .......... 277<br/>12.3 Using Genetic Algorithms ................... . . 279<br/>12.3.1 Map Colouring ................... ... 279<br/>12.3.2 Punctuated Equilibrium . ................ 281<br/>12.3.3 Example: The Knapsack Problem . .......... 281<br/>12.3.4 Example: The Four Peaks Problem . .......... 282<br/>12.3.5 Limitations of the GA . ................. 284<br/>12.3.6 Training Neural Networks with Genetic Algorithms.. 285<br/>12.4 Genetic Programming ................... ... 285<br/>12.5 Combining Sampling with Evolutionary Learning . ..... 286<br/>Further Reading ................... ....... . 289<br/>Practice Questions ................... ...... . 290<br/>13 Reinforcement Learning 293<br/>13.1 Overview ................... ......... 294<br/>13.2 Example: Getting Lost ................... . . 296<br/>13.2.1 State and Action Spaces . ................ 298<br/>13.2.2 Carrots and Sticks: the Reward Function . ...... 299<br/>13.2.3 Discounting ................... ..... 300<br/>13.2.4 Action Selection .......... ........... 301<br/>13.2.5 Policy ................ ......... ..302<br/>13.3 Markov Decision Processes ........ ........... 302<br/>13.3.1 The Markov Property . ................. 302<br/>13.3.2 Probabilities in Markov Decision Processes . ..... 303<br/>13.4 Values ............ .. ....... . ... . ...... 305<br/>13.5 Back on Holiday: Using Reinforcement Learning . ...... 309<br/>13.6 The Difference between Sarsa and Q-Learning . ....... 310<br/>13.7 Uses of Reinforcement Learning . ............... 311<br/>Further Reading ................. ......... ..312<br/>Practice Questions ................ . ........ 312<br/>14 Markov Chain Monte Carlo (MCMC) Methods 315<br/>14.1 Sampling .................. . ........ ..315<br/>14.1.1 Random Numbers ......... .......... 316<br/>14.1.2 Gaussian Random Numbers . .............. 317<br/>14.2 Monte Carlo or Bust ........... . ........ 319<br/>14.3 The Proposal Distribution ........ .......... 320<br/>14.4 Markov Chain Monte Carlo . .................. 325<br/>14.4.1 Markov Chains ........... ........... 325<br/>14.4.2 The Metropolis-Hastings Algorithm .... ...... . 326<br/>14.4.3 Simulated Annealing (Again) . ............. 327<br/>14.4.4 Gibbs Sampling ............ ........... 328<br/>Further Reading .................. .......... 331<br/>Practice Questions ................ ......... ..332<br/>15 Graphical Models 333<br/>15.1 Bayesian Networks ............. ......... . 335<br/>15.1.1 Example: Exam Panic ....... . .......... 335<br/>15.1.2 Approximate Inference ........ ........... 339<br/>15.1.3 Making Bayesian Networks . .............. 342<br/>15.2 Markov Random Fields ................... .. 344<br/>15.3 Hidden Markov Models (HMMs) ..... . .......... 347<br/>15.3.1 The Forward Algorithm ...... ........... 349<br/>15.3.2 The Viterbi Algorithm ................. . 352<br/>15.3.3 The Baum-Welch or Forward-Backward Algorithm . 353<br/>15.4 Tracking Methods ............. . ........ 356<br/>15.4.1 The Kalman Filter .................. .. 357<br/>15.4.2 The Particle Filter ......... ........... 360<br/>Further Reading ................. .......... . 361<br/>Practice Questions ................ ......... . 362<br/>16 Python 365<br/>16.1 Installing Python and Other Packages ......... . .. 365<br/>16.2 Getting Started . . . . . . .............. . . . 365<br/>16.2.1 Python for MATLAB and R users . .......... 370<br/>16.3 Code Basics ...... . ....... . .............. 370<br/>16.3.1 Writing and Importing Code . . ............ 370<br/>16.3.2 Control Flow . ........ ............. . 371<br/>16.3.3 Functions . . . .... . ...... . . . . . 372<br/>16.3.4 The doc String . . .............. . . ... .... 373<br/>16.3.5 map and lambda . . . .. ........... . ... ..373<br/>16.3.6 Exceptions . ........ . ...... . . . . . . . 374<br/>16.3.7 Classes . . . . . . . . ............. ... . 374<br/>16.4 Using NumPy and Matplotlib . ........ . . . . . 375<br/>16.4.1 Arrays ........... .. ............ . 375<br/>16.4.2 Random Numbers ............ . . . . . .....379<br/>16.4.3 Linear Algebra ....... .. .... . . .......... 379<br/>16.4.4 Plotting . . . ............ . .. . ...... . 380<br/>Further Reading .. ... .............. ......... . . 381<br/>Practice Questions ..... ................. .. . . . . . . 382<br/>
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Machine learning.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Algorithms.
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Chapman & Hall/CRC machine learning & pattern recognition series.
856 41 - ELECTRONIC LOCATION AND ACCESS
Materials specified Table of contents only
Uniform Resource Identifier <a href="http://www.loc.gov/catdir/toc/fy0904/2009007292.html">http://www.loc.gov/catdir/toc/fy0904/2009007292.html</a>
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN)
a 7
b cbc
c orignew
d 1
e ecip
f 20
g y-gencatlg
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Koha item type BOOK
Koha issues (borrowed), all copies 2
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Shelving location Date acquired Inventory number Total Checkouts Full call number Barcode Date last seen Date last checked out Price effective from Koha item type
          COLLEGE LIBRARY COLLEGE LIBRARY SUBJECT REFERENCE 2021-03-15 42862 2 006.31 M359 2009 CITU-CL-42862 2023-10-03 2023-09-25 2021-03-15 BOOK