000 -LEADER |
fixed length control field |
12032cam a22003614a 4500 |
001 - CONTROL NUMBER |
control field |
15982677 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
CITU |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20241014140625.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
091113s2010 njua 001 0 eng |
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER |
LC control number |
2009047257 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9780470553022 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9780470521571 (cloth : alk. paper) |
040 ## - CATALOGING SOURCE |
Original cataloging agency |
CITU LRAC |
Transcribing agency |
DLC |
Modifying agency |
DLC |
Language of cataloging |
eng |
041 ## - LANGUAGE CODE |
Language code of text/sound track or separate title |
eng |
050 00 - LIBRARY OF CONGRESS CALL NUMBER |
Classification number |
TK454 |
Item number |
.D67 2010 |
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
621.319 |
Edition number |
22 |
100 1# - MAIN ENTRY--PERSONAL NAME |
Preferred name for the person |
Dorf, Richard C. |
Relator term |
author |
245 10 - TITLE STATEMENT |
Title |
Introduction to electric circuits / |
Statement of responsibility, etc |
Richard C. Dorf & James A. Svoboda. |
250 ## - EDITION STATEMENT |
Edition statement |
Eighth edition |
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) |
Place of publication, distribution, etc |
Hoboken, NJ : |
Name of publisher, distributor, etc |
John Wiley & Sons, |
Date of publication, distribution, etc |
c2011. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
xxiii, 886 pages : |
Other physical details |
illustrations ; |
Dimensions |
25 cm. |
336 ## - CONTENT TYPE |
Source |
rdacontent |
Content type term |
text |
Content type code |
txt |
337 ## - MEDIA TYPE |
Source |
rdamedia |
Media type term |
unmediated |
Media type code |
n |
338 ## - CARRIER TYPE |
Source |
rdacarrier |
Carrier type term |
volume |
Carrier type code |
nc |
500 ## - GENERAL NOTE |
General note |
Includes index. |
520 ## - SUMMARY, ETC. |
Summary, etc |
Chapter 1 Electric Circuit Variables<br/>1 (19)<br/>1.1 Introduction<br/>1 (1)<br/>1.2 Electric Circuits and Current<br/>1 (4)<br/>1.3 Systems of Units<br/>5 (2)<br/>1.4 Voltage<br/>7 (1)<br/>1.5 Power and Energy<br/>7 (4)<br/>1.6 Circuit Analysis and Design<br/>11 (2)<br/>1.7 How Can We Check...?<br/>13 (1)<br/>1.8 Design Example---Jet Valve Controller<br/>14 (1)<br/>1.9 Summary<br/>15 (5)<br/>Problems<br/>15 (4)<br/>Design Problems<br/>19 (1)<br/>Chapter 2 Circuit Elements<br/>20 (33)<br/>2.1 Introduction<br/>20 (1)<br/>2.2 Engineering and Linear Models<br/>20 (4)<br/>2.3 Active and Passive Circuit Elements<br/>24 (1)<br/>2.4 Resistors<br/>25 (3)<br/>2.5 Independent Sources<br/>28 (3)<br/>2.6 Voltmeters and Ammeters<br/>31 (2)<br/>2.7 Dependent Sources<br/>33 (4)<br/>2.8 Transducers<br/>37 (2)<br/>2.9 Switches<br/>39 (2)<br/>2.10 How Can We Check....?<br/>41 (1)<br/>2.11 Design Example---Temperature Sensor<br/>42 (2)<br/>2.12 Summary<br/>44 (9)<br/>Problems<br/>44 (8)<br/>Design Problems<br/>52 (1)<br/>Chapter 3 Resistive Circuits<br/>53 (55)<br/>3.1 Introduction<br/>53 (1)<br/>3.2 Kirchhoff's Laws<br/>53 (8)<br/>3.3 Series Resistors and Voltage Division<br/>61 (5)<br/>3.4 Parallel Resistors and Current Division<br/>66 (6)<br/>3.5 Series Voltage Sources and Parallel Current Sources<br/>72 (1)<br/>3.6 Circuit Analysis<br/>73 (5)<br/>3.7 Analyzing Resistive Circuits Using MATLAB<br/>78 (4)<br/>3.8 How Can We Check ...?<br/>82 (2)<br/>3.9 Design Example---Adjustable Voltage Source<br/>84 (3)<br/>3.10 Summary<br/>87 (21)<br/>Problems<br/>88 (18)<br/>Design Problems<br/>106 (2)<br/>Chapter 4 Methods of Analysis of Resistive Circuits<br/>108 (54)<br/>4.1 Introduction<br/>108 (1)<br/>4.2 Node Voltage Analysis of Circuits with Current Sources<br/>109 (6)<br/>4.3 Node Voltage Analysis of Circuits with Current and Voltage Sources<br/>115 (5)<br/>4.4 Node Voltage Analysis with Dependent Sources<br/>120 (2)<br/>4.5 Mesh Current Analysis with Independent Voltage Sources<br/>122 (5)<br/>4.6 Mesh Current Analysis with Current and Voltage Sources<br/>127 (4)<br/>4.7 Mesh Current Analysis with Dependent Sources<br/>131 (3)<br/>4.8 The Node Voltage Method and Mesh Current Method Compared<br/>134 (2)<br/>4.9 Mesh Current Analysis Using MATLAB<br/>136 (2)<br/>4.10 Using PSpice to Determine Node Voltages and Mesh Currents<br/>138 (2)<br/>4.11 How Can We Check ... ?<br/>140 (3)<br/>4.12 Design Example---Potentiometer Angle Display<br/>143 (3)<br/>4.13 Summary<br/>146 (16)<br/>Problems<br/>147 (13)<br/>PSpice Problems<br/>160 (1)<br/>Design Problems<br/>160 (2)<br/>Chapter 5 Circuit Theorems<br/>162 (46)<br/>5.1 Introduction<br/>162 (1)<br/>5.2 Source Transformations<br/>162 (5)<br/>5.3 Superposition<br/>167 (4)<br/>5.4 Thevenin's Theorem<br/>171 (4)<br/>5.5 Norton's Equivalent Circuit<br/>175 (4)<br/>5.6 Maximum Power Transfer<br/>179 (3)<br/>5.7 Using MATLAB to Determine the Thevenin Equivalent Circuit<br/>182 (3)<br/>5.8 Using PSpice to Determine the Thevenin Equivalent Circuit<br/>185 (3)<br/>5.9 How Can We Check...?<br/>188 (1)<br/>5.10 Design Example---Strain Gauge Bridge<br/>189 (3)<br/>5.11 Summary<br/>192 (16)<br/>Problems<br/>192 (13)<br/>PSpice Problems<br/>205 (1)<br/>Design Problems<br/>206 (2)<br/>Chapter 6 The Operational Amplifier<br/>208 (49)<br/>6.1 Introduction<br/>208 (1)<br/>6.2 The Operational Amplifier<br/>208 (2)<br/>6.3 The Ideal Operational Amplifier<br/>210 (2)<br/>6.4 Nodal Analysis of Circuits Containing Ideal Operational Amplifiers<br/>212 (5)<br/>6.5 Design Using Operational Amplifiers<br/>217 (5)<br/>6.6 Operational Amplifier Circuits and Linear Algebraic Equations<br/>222 (5)<br/>6.7 Characteristics of Practical Operational Amplifiers<br/>227 (7)<br/>6.8 Analysis of Op Amp Circuits Using MATLAB<br/>234 (2)<br/>6.9 Using PSpice to Analyze Op Amp Circuits<br/>236 (1)<br/>6.10 How Can We Check ...?<br/>237 (2)<br/>6.11 Design Example---Transducer Interface Circuit<br/>239 (2)<br/>6.12 Summary<br/>241 (16)<br/>Problems<br/>242 (13)<br/>PSpice Problems<br/>255 (1)<br/>Design Problems<br/>256 (1)<br/>Chapter 7 Energy Storage Elements<br/>257 (54)<br/>7.1 Introduction<br/>257 (1)<br/>7.2 Capacitors<br/>258 (6)<br/>7.3 Energy Storage in a Capacitor<br/>264 (3)<br/>7.4 Series and Parallel Capacitors<br/>267 (2)<br/>7.5 Inductors<br/>269 (5)<br/>7.6 Energy Storage in an Inductor<br/>274 (2)<br/>7.7 Series and Parallel Inductors<br/>276 (1)<br/>7.8 Initial Conditions of Switched Circuits<br/>277 (4)<br/>7.9 Operational Amplifier Circuits and Linear Differential Equations<br/>281 (6)<br/>7.10 Using MATLAB to Plot Capacitor or Inductor Voltage and Current<br/>287 (2)<br/>7.11 How Can We Check...?<br/>289 (1)<br/>7.12 Design Example---Integrator and Switch<br/>290 (3)<br/>7.13 Summary<br/>293 (18)<br/>Problems<br/>294 (15)<br/>Design Problems<br/>309 (2)<br/>Chapter 8 The Complete Response of RL and RC Circuits<br/>311 (57)<br/>8.1 Introduction<br/>311 (1)<br/>8.2 First-Order Circuits<br/>311 (3)<br/>8.3 The Response of a First-Order Circuit to a Constant Input<br/>314 (13)<br/>8.4 Sequential Switching<br/>327 (2)<br/>8.5 Stability of First-Order Circuits<br/>329 (2)<br/>8.6 The Unit Step Source<br/>331 (4)<br/>8.7 The Response of a First-Order Circuit to a Nonconstant Source<br/>335 (5)<br/>8.8 Differential Operators<br/>340 (2)<br/>8.9 Using PSpice to Analyze First-Order Circuits<br/>342 (3)<br/>8.10 How Can We Check ...?<br/>345 (4)<br/>8.11 Design Example---A Computer and Printer<br/>349 (3)<br/>8.12 Summary<br/>352 (16)<br/>Problems<br/>353 (13)<br/>PSpice Problems<br/>366 (1)<br/>Design Problems<br/>367 (1)<br/>Chapter 9 The Complete Response of Circuits With Two Energy Storage Elements<br/>368 (47)<br/>9.1 Introduction<br/>368 (1)<br/>9.2 Differential Equation for Circuits with Two Energy Storage Elements<br/>369 (4)<br/>9.3 Solution of the Second-Order Differential Equation---The Natural Response<br/>373 (3)<br/>9.4 Natural Response of the Unforced Parallel RLC Circuit<br/>376 (3)<br/>9.5 Natural Response of the Critically Damped Unforced Parallel RLC Circuit<br/>379 (1)<br/>9.6 Natural Response of an Underdamped Unforced Parallel RLC Circuit<br/>380 (2)<br/>9.7 Forced Response of an RLC Circuit<br/>382 (4)<br/>9.8 Complete Response of an RLC Circuit<br/>386 (3)<br/>9.9 State Variable Approach to Circuit Analysis<br/>389 (4)<br/>9.10 Roots in the Complex Plane<br/>393 (1)<br/>9.11 How Can We Check . . .?<br/>394 (3)<br/>9.12 Design Example---Auto Airbag Igniter<br/>397 (2)<br/>9.13 Summary<br/>399 (16)<br/>Problems<br/>401 (11)<br/>PSpice Problems<br/>412 (1)<br/>Design Problems<br/>413 (2)<br/>Chapter 10 Sinusoidal Steady-State Analysis<br/>415 (81)<br/>10.1 Introduction<br/>415 (1)<br/>10.2 Sinusoidal Sources<br/>416 (5)<br/>10.3 Steady-State Response of an RL Circuit for a Sinusoidal Forcing Function<br/>421 (1)<br/>10.4 Complex Exponential Forcing Function<br/>422 (4)<br/>10.5 The Phasor<br/>426 (4)<br/>10.6 Phasor Relationships for R, L, and C Elements<br/>430 (4)<br/>10.7 Impedance and Admittance<br/>434 (4)<br/>10.8 Kirchhoff's Laws Using Phasors<br/>438 (5)<br/>10.9 Node Voltage and Mesh Current Analysis Using Phasors<br/>443 (6)<br/>10.10 Superposition, Thevenin and Norton Equivalents, and Source Transformations<br/>449 (5)<br/>10.11 Phasor Diagrams<br/>454 (1)<br/>10.12 Phasor Circuits and the Operational Amplifier<br/>455 (2)<br/>10.13 The Complete Response<br/>457 (7)<br/>10.14 Using MATLAB for Analysis of Steady-State Circuits with Sinusoidal Inputs<br/>464 (2)<br/>10.15 Using PSpice to Analyze AC Circuits<br/>466 (3)<br/>10.16 How Can We Check ...?<br/>469 (2)<br/>10.17 Design Example---Op Amp Circuit<br/>471 (3)<br/>10.18 Summary<br/>474 (22)<br/>Problems<br/>474 (19)<br/>PSpice Problems<br/>493 (1)<br/>Design Problems<br/>494 (2)<br/>Chapter 11 AC Steady-State Power<br/>496 (62)<br/>11.1 Introduction<br/>496 (1)<br/>11.2 Electric Power<br/>496 (1)<br/>11.3 Instantaneous Power and Average Power<br/>497 (4)<br/>11.4 Effective Value of a Periodic Waveform<br/>501 (2)<br/>11.5 Complex Power<br/>503 (8)<br/>11.6 Power Factor<br/>511 (8)<br/>11.7 The Power Superposition Principle<br/>519 (3)<br/>11.8 The Maximum Power Transfer Theorem<br/>522 (1)<br/>11.9 Coupled Inductors<br/>523 (8)<br/>11.10 The Ideal Transformer<br/>531 (5)<br/>11.11 How Can We Check . . .?<br/>536 (2)<br/>11.12 Design Example---Maximum Power Transfer<br/>538 (2)<br/>11.13 Summary<br/>540 (18)<br/>Problems<br/>542 (14)<br/>PSpice Problems<br/>556 (1)<br/>Design Problems<br/>556 (2)<br/>Chapter 12 Three-Phase Circuits<br/>558 (36)<br/>12.1 Introduction<br/>558 (1)<br/>12.2 Three-Phase Voltages<br/>559 (3)<br/>12.3 The Y-to-Y Circuit<br/>562 (9)<br/>12.4 The Δ-Connected Source and Load<br/>571 (2)<br/>12.5 The Y-to-Δ Circuit<br/>573 (3)<br/>12.6 Balanced Three-Phase Circuits<br/>576 (2)<br/>12.7 Instantaneous and Average Power in a Balanced Three-Phase Load<br/>578 (3)<br/>12.8 Two-Wattmeter Power Measurement<br/>581 (3)<br/>12.9 How Can We Check. . .?<br/>584 (3)<br/>12.10 Design Example---Power Factor Correction<br/>587 (1)<br/>12.11 Summary<br/>588 (6)<br/>Problems<br/>589 (4)<br/>PSpice Problems<br/>593 (1)<br/>Design Problems<br/>593 (1)<br/>Chapter 13 Frequency Response<br/>594 (66)<br/>13.1 Introduction<br/>594 (1)<br/>13.2 Gain, Phase Shift, and the Network Function<br/>594 (12)<br/>13.3 Bode Plots<br/>606 (17)<br/>13.4 Resonant Circuits<br/>623 (7)<br/>13.5 Frequency Response of Op Amp Circuits<br/>630 (2)<br/>13.6 Plotting Bode Plots Using MATLAB<br/>632 (2)<br/>13.7 Using PSpice to Plot a Frequency Response<br/>634 (2)<br/>13.8 How Can We Check . . . ?<br/>636 (4)<br/>13.9 Design Example---Radio Tuner<br/>640 (2)<br/>13.10 Summary<br/>642 (18)<br/>Problems<br/>643 (13)<br/>PSpice Problems<br/>656 (2)<br/>Design Problems<br/>658 (2)<br/>Chapter 14 The Laplace Transform<br/>660 (70)<br/>14.1 Introduction<br/>660 (1)<br/>14.2 Laplace Transform<br/>661 (6)<br/>14.3 Pulse Inputs<br/>667 (4)<br/>14.4 Inverse Laplace Transform<br/>671 (6)<br/>14.5 Initial and Final Value Theorems<br/>677 (3)<br/>14.6 Solution of Differential Equations Describing a Circuit<br/>680 (1)<br/>14.7 Circuit Analysis Using Impedance and Initial Conditions<br/>681 (11)<br/>14.8 Transfer Function and Impedance<br/>692 (3)<br/>14.9 Convolution<br/>695 (4)<br/>14.10 Stability<br/>699 (3)<br/>14.11 Partial Fraction Expansion Using MATLAB<br/>702 (5)<br/>14.12 How Can We Check. . . ?<br/>707 (3)<br/>14.13 Design Example---Space Shuttle Cargo Door<br/>710 (3)<br/>14.14 Summary<br/>713 (17)<br/>Problems<br/>714 (14)<br/>PSpice Problems<br/>728 (1)<br/>Design Problems<br/>729 (1)<br/>Chapter 15 Fourier Series and Fourier Transform<br/>730 (63)<br/>15.1 Introduction<br/>730 (1)<br/>15.2 The Fourier Series<br/>731 (8)<br/>15.3 Symmetry of the Function f(t)<br/>739 (5)<br/>15.4 Fourier Series of Selected Waveforms<br/>744 (2)<br/>15.5 Exponential Form of the Fourier Series<br/>746 (8)<br/>15.6 The Fourier Spectrum<br/>754 (4)<br/>15.7 Circuits and Fourier Series<br/>758 (3)<br/>15.8 Using PSpice to Determine the Fourier Series<br/>761 (5)<br/>15.9 The Fourier Transform<br/>766 (3)<br/>15.10 Fourier Transform Properties<br/>769 (4)<br/>15.11 The Spectrum of Signals<br/>773 (1)<br/>15.12 Convolution and Circuit Response<br/>774 (3)<br/>15.13 The Fourier Transform and the Laplace Transform<br/>777 (2)<br/>15.14 How Can We Check...?<br/>779 (2)<br/>15.15 Design Example---DC Power Supply<br/>781 (3)<br/>15.16 Summary<br/>784 (9)<br/>Problems<br/>785 (6)<br/>PSpice Problems<br/>791 (1)<br/>Design Problems<br/>791 (2)<br/>Chapter 16 Filter Circuits<br/>793 (36)<br/>16.1 Introduction<br/>793 (1)<br/>16.2 The Electric Filter<br/>793 (1)<br/>16.3 Filters<br/>794 (1)<br/>16.4 Second-Order Filters<br/>794 (11)<br/>16.5 High-Order Filters<br/>805 (6)<br/>16.6 Simulating Filter Circuits Using PSpice<br/>811 (4)<br/>16.7 How Can We Check . . . ?<br/>815 (2)<br/>16.8 Design Example---Anti-Aliasing Filter<br/>817 (3)<br/>16.9 Summary<br/>820 (9)<br/>Problems<br/>820 (5)<br/>PSpice Problems<br/>825 (3)<br/>Design Problems<br/>828 (1)<br/>Chapter 17 Two-Port and Three-Port Networks<br/>829 (24)<br/>17.1 Introduction<br/>829 (1)<br/>17.2 T-to-II Transformation and Two-Port Three-Terminal Networks<br/>830 (2)<br/>17.3 Equations of Two-Port Networks<br/>832 (3)<br/>17.4 Z and Y Parameters for a Circuit with Dependent Sources<br/>835 (2)<br/>17.5 Hybrid and Transmission Parameters<br/>837 (2)<br/>17.6 Relationships Between Two-Port Parameters<br/>839 (2)<br/>17.7 Interconnection of Two-Port Networks<br/>841 (3)<br/>17.8 How Can We Check . . . ?<br/>844 (2)<br/>17.9 Design Example---Transistor Amplifier<br/>846 (2)<br/>17.10 Summary<br/>848 (5)<br/>Problems<br/>848 (4)<br/>Design Problems<br/>852 (1)<br/>Appendix A Getting Started with PSpice 853 (7)<br/>Appendix B MATLAB, Matricies and Complex Arithmetic 860 (11)<br/>Appendix C Mathematical Formulas 871 (3)<br/>Appendix D Standard Resistor Color Code 874 (2)<br/>References 876 (3)<br/>Index 879 <br/> |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Electric circuits. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Electric networks |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Svoboda, James A. |
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN) |
a |
7 |
b |
cbc |
c |
orignew |
d |
1 |
e |
ecip |
f |
20 |
g |
y-gencatlg |
942 ## - ADDED ENTRY ELEMENTS |
Source of classification or shelving scheme |
|
Item type |
BOOK |
Issues (borrowed), all copies |
13 |