Lead-free soldering process development and reliability / (Record no. 84995)

000 -LEADER
fixed length control field 20004nam a2200313 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240424085146.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr aa aaaaa
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 230412b ||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119482093
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621.381046 B3201 2020
100 1# - MAIN ENTRY--PERSONAL NAME
Preferred name for the person Bath, Jasbir
Relator code editor.
245 10 - TITLE STATEMENT
Title Lead-free soldering process development and reliability /
Statement of responsibility, etc Jasbir Bath.
264 #1 - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc Hoboken, New Jersey :
Name of publisher, distributor, etc John Wiley & Sons, Inc.,
Date of publication, distribution, etc c2020.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource.
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
490 1# - SERIES STATEMENT
Series statement Wiley series in quality & reliability engineering
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references and index.
505 0# - CONTENTS
Formatted contents note List of Contributors xix<br/><br/>Introduction xxi<br/><br/>1 Lead-Free Surface Mount Technology 1<br/>Jennifer Nguyen and Jasbir Bath<br/><br/>1.1 Introduction 1<br/><br/>1.2 Lead-Free Solder Paste Alloys 1<br/><br/>1.3 Solder Paste Printing 2<br/><br/>1.3.1 Introduction 2<br/><br/>1.3.2 Key Paste Printing Elements 2<br/><br/>1.4 Component Placement 5<br/><br/>1.4.1 Introduction 5<br/><br/>1.4.2 Key Placement Parameters 5<br/><br/>1.4.2.1 Nozzle 6<br/><br/>1.4.2.2 Vision System 6<br/><br/>1.4.2.3 PCB Support 6<br/><br/>1.4.2.4 Component Size, Packaging, and Feeder Capacity 6<br/><br/>1.4.2.5 Feeder Capacity 6<br/><br/>1.5 Reflow Process 7<br/><br/>1.5.1 Introduction 7<br/><br/>1.5.2 Key Parameters 7<br/><br/>1.5.2.1 Preheat 7<br/><br/>1.5.2.2 Soak 8<br/><br/>1.5.2.3 Reflow 8<br/><br/>1.5.2.4 Cooling 9<br/><br/>1.5.2.5 Reflow Atmosphere 9<br/><br/>1.6 Vacuum Soldering 9<br/><br/>1.7 Paste in Hole 10<br/><br/>1.8 Robotic Soldering 11<br/><br/>1.9 Advanced Technologies 12<br/><br/>1.9.1 Flip Chip 12<br/><br/>1.9.2 Package on Package 12<br/><br/>1.10 Inspection 13<br/><br/>1.10.1 Solder Paste Inspection (SPI) 13<br/><br/>1.10.2 Solder Joint Inspection 14<br/><br/>1.10.2.1 Automated Optical Inspection (AOI) 14<br/><br/>1.10.2.2 X-ray Inspection 15<br/><br/>1.11 Conclusions 16<br/><br/>References 17<br/><br/>2 Wave/Selective Soldering 19<br/>Gerjan Diepstraten<br/><br/>2.1 Introduction 19<br/><br/>2.2 Flux 19<br/><br/>2.2.1 The Function of a Flux 19<br/><br/>2.2.2 Flux Contents 20<br/><br/>2.3 Amount of Flux Application on a Board 20<br/><br/>2.4 Flux Handling 21<br/><br/>2.5 Flux Application 21<br/><br/>2.5.1 Methods to Apply Flux (Wave Soldering) 21<br/><br/>2.5.2 Methods to Apply Flux (Selective Soldering) 23<br/><br/>2.6 Preheat 24<br/><br/>2.6.1 Preheat Process-Heating Methods 24<br/><br/>2.6.2 Preheat Temperatures 27<br/><br/>2.6.3 Preheat Time 28<br/><br/>2.6.4 Controlling Preheat Temperatures 28<br/><br/>2.6.5 BoardWarpage Compensation (Selective Soldering) 29<br/><br/>2.7 Selective Soldering 29<br/><br/>2.7.1 Different Selective Soldering Point to Point Nozzles (Selective Soldering) 29<br/><br/>2.7.2 Solder Temperatures (Selective Soldering) 30<br/><br/>2.7.3 Dip/Contact Times (Selective Soldering) 31<br/><br/>2.7.4 Drag Conditions (Selective Soldering) 31<br/><br/>2.7.5 Nitrogen Environment (Selective Soldering) 31<br/><br/>2.7.6 Wave Height Controls (Selective Soldering) 32<br/><br/>2.7.7 De-Bridging Tools (Selective Soldering) 32<br/><br/>2.7.8 Solder Pot (Selective Soldering) 33<br/><br/>2.7.9 Topside Heating during Soldering (Selective Soldering) 34<br/><br/>2.7.10 Selective Soldering Dip Process with Nozzle Plates (Selective Soldering) 34<br/><br/>2.7.11 Solder Temperatures for Multi-Wave Dip Soldering (Selective Soldering) 35<br/><br/>2.7.12 Nitrogen Environment (Selective Soldering) 35<br/><br/>2.7.13 Wave Height Control (Selective Soldering) 36<br/><br/>2.7.14 Dip Time – Contact Time with Solder (Selective Soldering) 36<br/><br/>2.7.15 Solder Flow Acceleration and Deceleration (Selective Soldering) 37<br/><br/>2.7.16 De-Bridging Tools (Selective Soldering) 37<br/><br/>2.7.17 Pallets (Selective Soldering) 38<br/><br/>2.7.18 Conveyor (Selective Soldering) 38<br/><br/>2.8 Wave Soldering 39<br/><br/>2.8.1 Wave Formers (Wave Soldering) 39<br/><br/>2.8.2 Pallets (Wave Soldering) 40<br/><br/>2.8.3 Nitrogen Environment (Wave Soldering) 40<br/><br/>2.8.4 Process Control (Wave Soldering) 41<br/><br/>2.8.5 Conveyor (Wave Soldering) 41<br/><br/>2.9 Conclusions 42<br/><br/>References 42<br/><br/>3 Lead-Free Rework 43<br/>Jasbir Bath<br/><br/>3.1 Introduction 43<br/><br/>3.2 Hand Soldering Rework for SMT and PTH Components 43<br/><br/>3.2.1 Alloy and Flux Choices 43<br/><br/>3.2.1.1 Alloys 43<br/><br/>3.2.1.2 Flux 44<br/><br/>3.2.2 Soldering Iron Tip Life 44<br/><br/>3.2.3 Hand Soldering Temperatures and Times 47<br/><br/>3.3 BGA/CSP Rework 50<br/><br/>3.3.1 Alloy and Flux Choices 50<br/><br/>3.3.1.1 Alloys 50<br/><br/>3.3.1.2 Flux 50<br/><br/>3.3.2 BGA/CSP Rework Soldering Temperatures and Times 50<br/><br/>3.3.3 Component Temperatures in Relation to IPC/JEDEC J-STD-020 and Component/BoardWarpage Standards 52<br/><br/>3.3.3.1 IPC/JEDEC J-STD-020 Standard 52<br/><br/>3.3.3.2 ComponentWarpage Standards 52<br/><br/>3.3.3.3 BoardWarpage Standards 52<br/><br/>3.3.4 Equipment Updates for Lead-Free BGA/CSP Rework 53<br/><br/>3.3.5 Adjacent Component Temperatures 53<br/><br/>3.4 Non-standard Component Rework (Including BTC/QFN) 54<br/><br/>3.4.1 Alloy and Flux Choices 54<br/><br/>3.4.1.1 Alloys 54<br/><br/>3.4.1.2 Flux 54<br/><br/>3.4.2 Soldering Temperatures and Times 54<br/><br/>3.4.3 Non-standard Component Temperatures in Relation to IPC JEDEC J-STD-020 Standard and ComponentWarpage Standards 55<br/><br/>3.4.4 Equipment and Tooling Updates for Lead-Free Non-standard Component Rework 55<br/><br/>3.4.5 Adjacent Component Temperatures 56<br/><br/>3.4.6 Non-standard Component Rework Solder Joint Reliability 56<br/><br/>3.5 PTH (Pin-Through-Hole)Wave Rework 56<br/><br/>3.5.1 Alloy and Flux Choices 56<br/><br/>3.5.1.1 Alloys 56<br/><br/>3.5.1.2 Flux 57<br/><br/>3.5.2 Soldering Temperatures and Times 57<br/><br/>3.5.3 Component Temperatures in Relation to Industry and Board Standards During PTH Rework 67<br/><br/>3.5.3.1 Component Temperature Rating Standards 67<br/><br/>3.5.3.2 Bare Board Testing Standards and Methods for PTH Rework 67<br/><br/>3.5.4 Equipment Updates for PTH Component Rework 68<br/><br/>3.5.5 Adjacent Component Temperatures During PTH Rework 68<br/><br/>3.5.6 PTH Component Rework Solder Joint Reliability 68<br/><br/>3.5.6.1 Copper Dissolution 68<br/><br/>3.5.6.2 Holefill 69<br/><br/>3.6 Conclusions 69<br/><br/>References 70<br/><br/>4 Solder Paste and Flux Technology 73<br/>Shantanu Joshi and Peter Borgesen<br/><br/>4.1 Introduction 73<br/><br/>4.2 Solder Paste 75<br/><br/>4.2.1 Water-Soluble Solder Paste 75<br/><br/>4.2.2 No-Clean Solder Paste 76<br/><br/>4.3 Flux Technology 77<br/><br/>4.3.1 Halide-Free and Halide-Containing 77<br/><br/>4.4 Composition of Solder Paste 79<br/><br/>4.4.1 Alloy 79<br/><br/>4.4.2 Flux 82<br/><br/>4.4.3 Solder Powder Type 83<br/><br/>4.4.3.1 Oxide Layer 84<br/><br/>4.5 Characteristics of a Solder Paste 84<br/><br/>4.5.1 Printing 84<br/><br/>4.5.1.1 Printing Parameters 85<br/><br/>4.5.2 Reflow 86<br/><br/>4.5.2.1 Wetting/Spreadability of Lead-Free Solder Paste 86<br/><br/>4.5.2.2 Bridging 86<br/><br/>4.5.2.3 Micro Solder Balls 86<br/><br/>4.5.2.4 Voiding 86<br/><br/>4.5.2.5 Head-on-Pillow Component Soldering Defect 88<br/><br/>4.5.2.6 Non-Wet Open 90<br/><br/>4.5.2.7 Tombstoning 90<br/><br/>4.5.3 In-Circuit Test (ICT) Probe Testability 90<br/><br/>4.5.4 Flux Reliability Issues 91<br/><br/>4.6 Conclusions 92<br/><br/>References 92<br/><br/>5 Low Temperature Lead-Free Alloys and Solder Pastes 95<br/>Raiyo Aspandiar, Nilesh Badwe, and Kevin Byrd<br/><br/>5.1 Introduction 95<br/><br/>5.1.1 Definition of Low Temperature Solders 95<br/><br/>5.1.2 Benefits of Low Temperature Soldering 97<br/><br/>5.1.2.1 Reduced Manufacturing Cost 98<br/><br/>5.1.2.2 Power Use Savings 98<br/><br/>5.1.2.3 Environmental Benefits 99<br/><br/>5.1.2.4 Manufacturing Yield Improvements 100<br/><br/>5.1.3 Drawbacks 103<br/><br/>5.1.3.1 Brittleness 103<br/><br/>5.1.4 Other Low Temperature Metallurgical Systems 103<br/><br/>5.2 Development of Robust Bismuth-Based Low Temperature Solder Alloys 105<br/><br/>5.2.1 Bismuth-Tin (Bi-Sn) Phase Diagram 105<br/><br/>5.2.2 Mechanical Properties 107<br/><br/>5.2.3 Physical Properties 108<br/><br/>5.2.4 Alloy Development Progress 108<br/><br/>5.2.5 Fluxes for Low Temperature Solders 109<br/><br/>5.3 SMT Process Characterization of Sn-Bi Based Solder Pastes 111<br/><br/>5.3.1 Printability 111<br/><br/>5.3.2 Reflow Profiles 112<br/><br/>5.3.3 Rework 113<br/><br/>5.4 Polymeric Reinforcement of Sn-Bi Based Low Temperature Alloys 114<br/><br/>5.4.1 Current Polymeric Reinforcement Strategies 114<br/><br/>5.4.2 Joint Reinforced Pastes (JRP) 118<br/><br/>5.4.3 Polymeric Reinforcement Summary 128<br/><br/>5.5 Mixed SnAgCu-BiSn BGA Solder Joints 128<br/><br/>5.5.1 Formation Mechanism 128<br/><br/>5.5.2 Microstructural Features and Key Characteristics 133<br/><br/>5.5.3 Soldering Process Optimization 134<br/><br/>5.5.4 Possible Defects 135<br/><br/>5.6 Solder Joint Reliability 140<br/><br/>5.7 Conclusions 145<br/><br/>5.8 Future Development and Trends 146<br/><br/>References 149<br/><br/>6 High Temperature Lead-Free Bonding Materials – The Need, the Potential Candidates and the Challenges 155<br/>Hongwen Zhang and Ning-Cheng Lee<br/><br/>6.1 Introduction 155<br/><br/>6.2 Solder Materials 159<br/><br/>6.2.1 Gold-Based Solders 159<br/><br/>6.2.2 Bismuth-Rich Solders 160<br/><br/>6.2.2.1 Design of Bismuth-Rich Solders 160<br/><br/>6.2.2.2 Mechanical Behavior of BiAgX 163<br/><br/>6.2.2.3 Microstructure and Microstructural Evolution of BiAgX Joint 167<br/><br/>6.2.3 Tin-Antimony (Sn-Sb) High Temperature Solders 174<br/><br/>6.2.4 Zinc-Aluminum Solders 176<br/><br/>6.3 Silver (Ag)-Sintering Materials 178<br/><br/>6.4 Transient Liquid Phase Bonding Materials/Technique 181<br/><br/>6.5 Summary 182<br/><br/>Acknowledgment 185<br/><br/>References 185<br/><br/>7 Lead (Pb)-Free Solders for High Reliability and High-Performance Applications 191<br/>Richard J. Coyle<br/><br/>7.1 Evolution of Commercial Lead (Pb)-Free Solder Alloys 191<br/><br/>7.1.1 First Generation Commercial Pb-Free Solders 191<br/><br/>7.1.2 Second Generation Commercial Pb-Free Solders 192<br/><br/>7.1.3 Third Generation Commercial Pb-Free Solders 196<br/><br/>7.2 Third Generation Alloy Research and Development 196<br/><br/>7.2.1 Limitations of Sn-Ag-Cu Solder Alloys 196<br/><br/>7.2.2 Emergence of Commercial Third Generation Alloys 202<br/><br/>7.2.2.1 The Genesis of 3rd Generation Alloy Development 202<br/><br/>7.2.2.2 An Expanding Class of 3rd Generation Alloys 202<br/><br/>7.2.3 Metallurgical Considerations 203<br/><br/>7.2.3.1 Antimony (Sb) Additions to Tin (Sn) 206<br/><br/>7.2.3.2 Indium (In) Additions to Tin (Sn) 207<br/><br/>7.2.3.3 Bismuth (Bi) Additions to Tin (Sn) 209<br/><br/>7.3 Reliability Testing Third Generation Commercial Pb-Free Solders 210<br/><br/>7.3.1 Thermal Fatigue Evaluations 210<br/><br/>7.3.2 iNEMI/HDPUG Third Generation Alloy Pb-Free Thermal Fatigue Project 213<br/><br/>7.3.3 Microstructure and Reliability of Third Generation Alloys 219<br/><br/>7.4 Reliability Gaps and Suggestions for AdditionalWork 223<br/><br/>7.4.1 Root Cause of Interfacial Fractures 223<br/><br/>7.4.2 Effect of Component Attributes on Thermal Fatigue 224<br/><br/>7.4.3 Effect of Surface Finish on Thermal Fatigue 224<br/><br/>7.4.4 Thermomechanical Test Parameters and Test Outcomes 225<br/><br/>7.4.4.1 Thermal Cycling Dwell Time 225<br/><br/>7.4.4.2 Preconditioning (Isothermal Aging) 225<br/><br/>7.4.4.3 Thermal Cycling of Mixed Metallurgy BGA Assemblies 226<br/><br/>7.4.4.4 Thermal Shock or Aggressive Thermal Cycling 226<br/><br/>7.4.5 Reliability Under Mechanical Loading: Drop/Shock, and Vibration 227<br/><br/>7.4.6 Solder Alloy Microstructure and Reliability 230<br/><br/>7.4.7 Summary of Suggestions for Additional Investigation 231<br/><br/>7.5 Conclusions 232<br/><br/>Acknowledgments 234<br/><br/>References 234<br/><br/>8 Lead-Free Printed Wiring Board Surface Finishes 249<br/>Rick Nichols<br/><br/>8.1 Introduction: Why a Surface Finish is Needed 249<br/><br/>8.2 Surface Finishes in the Market 250<br/><br/>8.3 Application Perspective 255<br/><br/>8.4 A Description of Final Finishes 261<br/><br/>8.4.1 Hot Air Solder Leveling (HASL) 263<br/><br/>8.4.1.1 Process Complexity 263<br/><br/>8.4.1.2 Process Description 265<br/><br/>8.4.1.3 Issues and Remedies 267<br/><br/>8.4.1.4 Summary 267<br/><br/>8.4.2 High Temperature OSP 267<br/><br/>8.4.2.1 Process Complexity 267<br/><br/>8.4.2.2 Process Description 269<br/><br/>8.4.2.3 Issues and Remedies 270<br/><br/>8.4.2.4 Summary 270<br/><br/>8.4.3 Immersion Tin 271<br/><br/>8.4.3.1 Process Complexity 271<br/><br/>8.4.3.2 Process Description 273<br/><br/>8.4.3.3 Issues and Remedies 275<br/><br/>8.4.3.4 Summary 276<br/><br/>8.4.4 Immersion Silver 276<br/><br/>8.4.4.1 Process Complexity 277<br/><br/>8.4.4.2 Process Description 279<br/><br/>8.4.4.3 Issues and Remedies 280<br/><br/>8.4.4.4 Summary 281<br/><br/>8.4.5 Electroless Nickel Immersion Gold (ENIG) 281<br/><br/>8.4.5.1 Process Complexity 281<br/><br/>8.4.5.2 Process Description 283<br/><br/>8.4.5.3 Issues and Remedies 285<br/><br/>8.4.5.4 Summary 286<br/><br/>8.4.6 Electroless Nickel/Electroless Palladium/Immersion Gold (ENEPIG) 287<br/><br/>8.4.6.1 Process Complexity 287<br/><br/>8.4.6.2 Process Description 289<br/><br/>8.4.6.3 Issues and Remedies 290<br/><br/>8.4.6.4 Summary 291<br/><br/>8.4.7 Electroless Nickel Autocatalytic Gold (ENAG) 291<br/><br/>8.4.7.1 Process Complexity 292<br/><br/>8.4.7.2 Process Description 293<br/><br/>8.4.7.3 Issues and Remedies 295<br/><br/>8.4.7.4 Summary 295<br/><br/>8.4.8 Electroless Palladium Autocatalytic Gold (EPAG) 295<br/><br/>8.4.8.1 Process Complexity 295<br/><br/>8.4.8.2 Process Description 297<br/><br/>8.4.8.3 Issues and Remedies 298<br/><br/>8.4.8.4 Summary 299<br/><br/>8.4.9 Electrolytic Nickel Electrolytic Gold 299<br/><br/>8.4.9.1 Process Complexity 299<br/><br/>8.4.9.2 Process Description 301<br/><br/>8.4.9.3 Issues and Remedies 301<br/><br/>8.4.9.4 Summary 302<br/><br/>8.5 Conclusions 303<br/><br/>References 304<br/><br/>9 PCB Laminates (Including High Speed Requirements) 307<br/>Karl Sauter and Silvio Bertling<br/><br/>9.1 Introduction 307<br/><br/>9.2 Manufacturing Background 307<br/><br/>9.3 PCB Fabrication Design and Laminate Manufacturing Factors Affecting Yield and Reliability 308<br/><br/>9.3.1 High Frequency Loss 308<br/><br/>9.3.2 Mixed Dielectric 308<br/><br/>9.3.3 Back-Drilling 309<br/><br/>9.3.4 Aspect Ratio 309<br/><br/>9.3.5 PCB Fabrication 309<br/><br/>9.3.6 Press Lamination 310<br/><br/>9.3.7 Moisture Content 310<br/><br/>9.3.8 Laminate Material 311<br/><br/>9.4 Assembly Factors Affecting Yields and Long-Term Reliability for Laminate Materials 311<br/><br/>9.4.1 Reflow Temperature 311<br/><br/>9.4.2 Assembly Components 312<br/><br/>9.4.3 Thermal Stress 312<br/><br/>9.5 Copper Foil Trends (by Silvio Bertling) 312<br/><br/>9.6 High Frequency/High Speed and Other Trends Affecting Laminate Materials 316<br/><br/>9.6.1 High Speed Standards 316<br/><br/>9.6.2 Adhesion Treatment (Prior to Press Lamination) 317<br/><br/>9.6.3 Laminate Material Filler Content 317<br/><br/>9.6.4 GlassWeave Effect 317<br/><br/>9.6.5 Halogen-Free 318<br/><br/>9.7 Conclusions 318<br/><br/>References 319<br/><br/>10 Underfills and Encapsulants Used in Lead-Free Electronic Assembly 321<br/>Brian J. Toleno<br/><br/>10.1 Introduction 321<br/><br/>10.2 Rheology 322<br/><br/>10.2.1 Rheological Response and Behavior 323<br/><br/>10.2.1.1 Thixotropy 325<br/><br/>10.2.2 Measuring Rheology 327<br/><br/>10.2.2.1 Spindle Type Viscometry 327<br/><br/>10.2.2.2 Cone and Plate Rheometry 328<br/><br/>10.3 Curing of Adhesive Systems 330<br/><br/>10.3.1 Thermal Cure 330<br/><br/>10.3.2 Ultraviolet (UV) Light Curing 335<br/><br/>10.3.3 Moisture Cure 338<br/><br/>10.4 Glass Transition Temperature 339<br/><br/>10.5 Coefficient of Thermal Expansion (CTE) 341<br/><br/>10.6 Young’s Modulus (E) 343<br/><br/>10.7 Applications 344<br/><br/>10.7.1 Underfills 344<br/><br/>10.7.1.1 Capillary Underfill 345<br/><br/>10.7.1.2 Fluxing (No-Flow) Underfill 348<br/><br/>10.7.1.3 Removable/Reworkable Underfill 349<br/><br/>10.7.1.4 Staking or Corner Bond Underfill 349<br/><br/>10.7.2 Encapsulant Materials 350<br/><br/>10.7.2.1 Glob Top 351<br/><br/>10.7.2.2 Component Encapsulation 351<br/><br/>10.7.2.3 Application 353<br/><br/>10.7.2.4 Low-Pressure Molding 355<br/><br/>10.8 Conclusions 355<br/><br/>References 355<br/><br/>11 Thermal Cycling and General Reliability Considerations 359<br/>Maxim Serebreni<br/><br/>11.1 Introduction to Thermal Cycling of Electronics 359<br/><br/>11.1.1 Influence of Solder Alloy Composition and Microstructure on Thermal Cycling Reliability 362<br/><br/>11.2 Influence of Package Type and Thermal Cycling Profile 363<br/><br/>11.2.1 Influence of Board and Pad Design 366<br/><br/>11.3 Fatigue Life Prediction Models 371<br/><br/>11.3.1 Empirical Models and Acceleration Factors 371<br/><br/>11.3.2 Semi-empirical Models 372<br/><br/>11.3.3 Finite Element Analysis (FEA) Based Fatigue Life Predictions 373<br/><br/>11.4 Conclusions 376<br/><br/>References 377<br/><br/>12 Intermetallic Compounds 381<br/>Alyssa Yaeger, Travis Dale, Elizabeth McClamrock, Ganesh Subbarayan, and Carol Handwerker<br/><br/>12.1 Introduction 381<br/><br/>12.1.1 Solders 382<br/><br/>12.1.2 Interaction with Substrates 382<br/><br/>12.2 Setting the Stage 384<br/><br/>12.2.1 Mechanical and Thermomechanical Response of Solder Joints 386<br/><br/>12.3 Common Lead-Free Solder Alloy Systems 392<br/><br/>12.3.1 Solder Joints Formed Between Sn-Cu, Sn-Ag, and Sn-Ag-Cu Solder Alloys and Copper Surface Finishes 396<br/><br/>12.3.1.1 Sn-Cu Solder on Copper 396<br/><br/>12.3.1.2 Sn-Ag and Sn-Ag-Cu Solder Alloys on Copper 399<br/><br/>12.3.2 Solder Joints Formed Between Sn-Cu, Sn-Ag, and Sn-Ag-Cu Alloys and Nickel Surface Finishes 408<br/><br/>12.3.2.1 Ni-Sn 408<br/><br/>12.3.2.2 Sn-Ag Solder Alloys on Nickel 411<br/><br/>12.3.2.3 Spalling 415<br/><br/>12.3.2.4 Effects of Phosphorus Concentration in ENIG on Solder Joint Reliability 416<br/><br/>12.3.3 Au-Sn 417<br/><br/>12.4 High Lead – Exemption 422<br/><br/>12.5 Conclusions 423<br/><br/>References 423<br/><br/>13 Conformal Coatings 429<br/>Jason Keeping<br/><br/>13.1 Introduction 429<br/><br/>13.2 Environmental, Health, and Safety (EHS) Requirements 430<br/><br/>13.3 Overview of Types of Conformal Coatings 430<br/><br/>13.3.1 Types of Conformal Coatings 431<br/><br/>13.3.1.1 Acrylic Resins (Type AR) 432<br/><br/>13.3.1.2 Urethane Resins (Type UR) 433<br/><br/>13.3.1.3 Epoxy Resins (Type ER) 433<br/><br/>13.3.1.4 Silicone Resins (Type SR) 435<br/><br/>13.3.1.5 Para-xylylene (Type XY) 436<br/><br/>13.3.1.6 Synthetic Rubber (Type SC) 437<br/><br/>13.3.1.7 Ultra-Thin (Type UT) 438<br/><br/>13.4 Preparatory Steps Necessary to Ensure a Successful Coating Process 440<br/><br/>13.4.1 Assembly Cleaning 440<br/><br/>13.4.2 Assembly Masking 440<br/><br/>13.4.3 Priming and Other Surface Treatments 441<br/><br/>13.4.3.1 Measuring Surface Energy 441<br/><br/>13.4.3.2 Water Drop Contact Angle 447<br/><br/>13.4.4 Bake-Out 448<br/><br/>13.5 Various Methods of Applying Conformal Coating 449<br/><br/>13.5.1 Manual Coating 449<br/><br/>13.5.2 Dip 449<br/><br/>13.5.3 Hand Spray 450<br/><br/>13.5.4 Automatic Spray 451<br/><br/>13.5.5 Selective Coating 451<br/><br/>13.5.6 Vapor Deposition 451<br/><br/>13.6 Aspects for Cure, Inspection, and Demasking 453<br/><br/>13.6.1 Cure 453<br/><br/>13.6.1.1 Solvent Evaporation 453<br/><br/>13.6.1.2 Room Temperature Vulcanization (RTV) 454<br/><br/>13.6.1.3 Heat Cure 454<br/><br/>13.6.1.4 UV Cure 454<br/><br/>13.6.1.5 Catalyzed 454<br/><br/>13.6.2 UV Inspection 455<br/><br/>13.6.3 Demasking 455<br/><br/>13.7 Repair and Rework Processes 456<br/><br/>13.7.1 Chemical 456<br/><br/>13.7.2 Thermal 456<br/><br/>13.7.3 Mechanical 457<br/><br/>13.7.4 Abrasion (Micro-Abrasion) 457<br/><br/>13.7.5 Plasma Etch 457<br/><br/>13.8 Design Guidance on When and Where Conformal Coating is Required, and Which Physical Characteristics and Properties are Important to Consider 457<br/><br/>13.8.1 Is Conformal Coating Required? 458<br/><br/>13.8.1.1 Why Use It? 458<br/><br/>13.8.1.2 Why Not Use Conformal Coating? 459<br/><br/>13.8.2 Desirable Material Properties 459<br/><br/>13.8.3 Areas to Mask 461<br/><br/>13.9 Long-Term Reliability and Testing 462<br/><br/>13.10 Conclusions 462<br/><br/>13.11 Future Work 463<br/><br/>References 463<br/><br/>Index 467<br/>
520 ## - SUMMARY, ETC.
Summary, etc Lead-free Soldering Process Development and Reliability provides a comprehensive discussion of all modern topics in lead-free soldering. Perfect for process, quality, failure analysis and reliability engineers in production industries, this reference will help practitioners address issues in research, development and production. <br/><br/>Among other topics, the book addresses: <br/><br/>· Developments in process engineering (SMT, Wave, Rework, Paste Technology) <br/><br/>· Low temperature, high temperature and high reliability alloys <br/><br/>· Intermetallic compounds <br/><br/>· PCB surface finishes and laminates <br/><br/>· Underfills, encapsulants and conformal coatings <br/><br/>· Reliability assessments <br/><br/>In a regulatory environment that includes the adoption of mandatory lead-free requirements in a variety of countries, the book’s explanations of high-temperature, low-temperature, and high-reliability lead-free alloys in terms of process and reliability implications are invaluable to working engineers. <br/><br/>Lead-free Soldering takes a forward-looking approach, with an eye towards developments likely to impact the industry in the coming years. These will include the introduction of lead-free requirements in high-reliability electronics products in the medical, automotive, and defense industries. The book provides practitioners in these and other segments of the industry with guidelines and information to help comply with these requirements.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Electronic packaging.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Solder and soldering.
655 #7 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Wiley series in quality & reliability engineering
856 ## - ELECTRONIC LOCATION AND ACCESS
Link text Full text available at Wiley Online Library Click here to view
Uniform Resource Identifier https://onlinelibrary.wiley.com/doi/book/10.1002/9781119482093
942 ## - ADDED ENTRY ELEMENTS
Source of classification or shelving scheme
Item type EBOOK
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Date acquired Inventory number Full call number Barcode Date last seen Price effective from Item type
          COLLEGE LIBRARY COLLEGE LIBRARY 2023-04-12 52569 621.381046 B3201 2020 52569 2023-04-12 2023-04-12 EBOOK