Essentials of materials science and engineering / Donald R. Askeland, Missouri University of Science and Technology, Emeritus, Wendelin J. Wright, Bucknell University.

By: Askeland, Donald R [author.]
Contributor(s): Wright, Wendelin J [author.]
Language: English Publisher: Australia; Boston, MA : Cengage, [2019]Edition: Fourth edition; SIDescription: xx, 727 pages : color illustrations ; 28 cmContent type: text Media type: unmediated Carrier type: volumeISBN: 9781337629157Subject(s): Materials | Materials science | Materials science -- Problems, exercises, etcDDC classification: 620.11 LOC classification: TA403 | .A7335 2019
Contents:
1. INTRODUCTION TO MATERIALS SCIENCE AND ENGINEERING.  What Is Materials Science and Engineering? Classification of Materials. Functional Classification of Materials. Classification of Materials Based on Structure. Environmental and Other Effects. Materials Design and Selection. 2. ATOMIC STRUCTURE.  The Structure of Materials: Technological Relevance. The Structure of the Atom. The Electronic Structure of the Atom. The Periodic Table. Atomic Bonding. Binding Energy and Interatomic Spacing. The Many Forms of Carbon: Relationships Between Arrangements of Atoms and Materials Properties. 3. ATOMIC AND IONIC ARRANGEMENTS.  Short-Range Order versus Long-Range Order. Amorphous Materials. Lattice, Basis, Unit Cells, and Crystal Structures. Allotropic or Polymorphic Transformations. Points, Directions, and Planes in the Unit Cell. Interstitial Sites. Crystal Structures of Ionic Materials. Covalent Structures. Diffraction Techniques for Crystal Structure Analysis. 4. IMPERFECTIONS IN THE ATOMIC AND LONIC ARRANGEMENT. Point Defects. Other Point Defects. Dislocations. Significance of Dislocations. Schmid?s Law. Influence of Crystal Structure. Surface Defects. Importance of Defects. 5. ATOM AND ION MOVEMENTS IN MATERIALS. Applications of Diffusion. Stability of Atoms and Ions. Mechanisms for Diffusion. Activation Energy for Diffusion. Rate of Diffusion [Fick?s First Law]. Factors Affecting Diffusion. Permeability of Polymers. Composition Profile [Fick?s Second Law]. Diffusion and Materials Processing. 6. MECHANICAL PROPERTIES: PART ONE.  Technological Significance. Terminology for Mechanical Properties. The Tensile Test: Use of the Stress Strain Diagram. Properties Obtained from the Tensile Test. True Stress and True Strain. The Bend Test for Brittle Materials. Hardness of Materials. Nanoindentation. Strain Rate Effects and Impact Behavior. Properties Obtained from the Impact Test. Bulk Metallic Glasses and Their Mechanical Behavior. Mechanical Behavior at Small Length Scales. Rheology of Liquids. 7. MECHANICAL PROPERTIES: PART TWO. Fracture Mechanics. The Importance of Fracture Mechanics. Microstructural Features of Fracture in Metallic Material. Microstructural Features of Fracture in Ceramics, Glasses, and Composites. Weibull Statistics for Failure Strength Analysis. Fatigue. Results of the Fatigue Test. Application of Fatigue Testing. Creep, Stress Rupture, and Stress Corrosion. Evaluation of Creep Behavior. Use of Creep Data.  8. STRAIN HARDENING AND ANNEALING.  Relationship of Cold Working to the Stress Strain Curve. Strain-Hardening Mechanisms. Properties versus Percent Cold Work. Microstructure, Texture Strengthening, and Residual Stresses. Characteristics of Cold Working. The Three Stages of Annealing. Control of Annealing. Annealing and Materials Processing. Hot Working.  9. PRINCIPLES OF SOLIDIFICATION.  Technological Significance. Nucleation. Applications of Controlled Nucleation. Growth Mechanisms. Solidification Time and Dendrite Size. Cooling Curves. Cast Structure. Solidification Defects. Casting Processes for Manufacturing Component. Continuous Casting and Ingot Casting. Directional Solidification [DS], Single Crystal Growth, and Epitaxial Growth. Solidification of Polymers and Inorganic Glasses. Joining of Metallic Materials. 10. SOLID SOLUTIONS AND PHASE EQUILIBRIUM. Phases and the Phase Diagram. Solubility and Solid Solutions. Conditions for Unlimited Solid Solubility. Solid-Solution Strengthening. Isomorphous Phase Diagrams. Relationship Between Properties and the Phase Diagram. Solidification of a Solid-Solution Alloy. Nonequilibrium Solidification and Segregation. 11. DISPERSION STRENGTHENING AND EUTECTIC PHASE DIAGRAMS.  Principles and Examples of Dispersion Strengthening. Intermetallic Compounds. Phase Diagrams Containing Three-Phase Reactions. The Eutectic Phase Diagram. Strength of Eutectic Alloys. Eutectics and Materials Processing. Nonequilibrium Freezing in the Eutectic System. Nanowires and the Eutectic Phase Diagram. 12. DISPERSION STRENGTHENING BY PHASE TRANSFORMATIONS AND HEAT TREATMENT.  Nucleation and Growth in Solid-State Reactions. Alloys Strengthened by Exceeding the Solubility Limit. Age or Precipitation Hardening and Its Applications. Microstructural Evolution in Age or Precipitation Hardening. Effects of Aging Temperature and Time. Requirements for Age Hardening. Use of Age-Hardenable Alloys at High Temperatures. The Eutectoid Reaction. Controlling the Eutectoid Reaction. The Martensitic Reaction and Tempering. The Shape-Memory Alloys [SMAs].   13.HEAT TREATMENT OF STEELS AND CAST IRONS.  Designations and Classification of Steels. Simple Heat Treatments. Isothermal Heat Treatments. Quench and Temper Heat Treatments. Effect of Alloying Elements. Application of Hardenability. Specialty Steels. Surface Treatments. Weldability of Steel. Stainless Steels.  Cast Irons. 14. NONFERROUS ALLOYS.   Aluminum Alloys. Magnesium and Beryllium Alloys. Copper Alloys. Nickel and Cobalt Alloys. Titanium Alloys. Refractory and Precious Metals.   15. CERAMICS.  Bonding in Ceramics. Structures of Crystalline Ceramics. Defects in Crystalline Ceramics.  Flaws in Ceramics. Synthesis and Processing of Crystalline Ceramics. Silica and Silicate Compounds. Inorganic Glasses. Glass-Ceramics. Processing and Applications of Clay Products. Refractories. Other Ceramic Materials.  16. POLYMERS.  Classification of Polymers. Addition and Condensation Polymerization. Degree of Polymerization. Typical Thermoplastics. Structure?Property Relationships in Thermoplastics. Effect of Temperature on Thermoplastics. Mechanical Properties of Thermoplastics. Elastomers [Rubbers]. Thermosetting Polymers. Adhesives. Polymer Processing and Recycling.   17. COMPOSITES: TEAMWORK AND SYNERGY IN MATERIALS.   Dispersion-Strengthened Composites. Particulate Composites. Fiber-Reinforced Composites. Characteristics of Fiber-Reinforced Composites. Manufacturing Fibers and Composites. Fiber-Reinforced Systems and Applications. Laminar Composite Materials. Examples and Applications of Laminar Composites. Sandwich Structures.   18. CORROSION AND WEAR.   Chemical Corrosion. Electrochemical Corrosion. The Electrode Potential in Electrochemical Cells. The Corrosion Current and Polarization. Types of Electrochemical Corrosion. Protection Against Electrochemical Corrosion. Microbial Degradation and Biodegradable Polymers. Oxidation and Other Gas Reactions. Wear and Erosion.   Appendix A: Selected Physical Properties of Metals. Appendix B: The Atomic and lonic Radii of Selected Elements. Answers to Selected Problems.
Summary: This text provides students with a solid understanding of the relationship between structure, processing and properties of materials. It covers fundamentals in an integrated approach that emphasizes applications of new technologies enabled by engineered materials. Help your students understand the science of materials in order to select and deploy materials as responsible engineers with Askeland/Wright's Essentials of materials science and engineering, 4th edition. Your students develop a foundational understanding of why materials behave the way they do, and how they are best used in actual engineering practice. Students learn why materials display certain properties as they study how the structure and processing of materials results in these properties. The authors link fundamental concepts to practical applications, emphasizing the necessary basics without overwhelming readers with too much underlying chemistry or physics. This presentation is ideal for an introductory science of materials class taught at the sophomore or junior level and assumes knowledge of first-year courses in college-level chemistry and physics.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Home library Call number Status Date due Barcode Item holds
BOOK BOOK COLLEGE LIBRARY
COLLEGE LIBRARY
SUBJECT REFERENCE
620.11 As47 2019 (Browse shelf) Available CITU-CL-49575
Total holds: 0

ABOUT THE AUTHORS: Dr. Donald R. Askeland joined the University of Missouri-Rolla (now the Missouri University of Science and Technology) in 1970 after obtaining his doctorate in Metallurgical Engineering from the University of Michigan. His primary interest is teaching, which has resulted in a variety of campus, university, and industry awards and the development of THE SCIENCE AND ENGINEERING OF MATERIALS textbook. Dr. Askeland is also active in research involving metals casting and metals joining, particularly in the production, treatment, and joining of cast irons, gating and fluidity of aluminum alloys, and optimization of casting processes. Additional work has concentrated on lost foam casting, permanent mold casting, and investment casting. Much of this work is interdisciplinary, providing data for creating computer models and validation of such models.

Dr. Wendelin Wright is a professor at Bucknell University with a joint appointment in the departments of Mechanical Engineering and Chemical Engineering. She received her B.S., M.S., and Ph.D. in Materials Science and Engineering from Stanford University. Prior to assuming her position at Bucknell, Dr. Wright was a faculty member at Santa Clara University. Her research interests focus on the mechanical behavior of materials, particularly those of metallic glasses. She is the recipient of the 2003 Walter J. Gores Award for Excellence in Teaching (Stanford University's highest teaching honor), a 2005 Presidential Early Career Award for Scientists and Engineers, and a 2010 National Science Foundation CAREER Award. Dr. Wright is a licensed professional engineer in metallurgy in California and a Fellow of ASM International.

Includes index.

1. INTRODUCTION TO MATERIALS SCIENCE AND ENGINEERING. 
What Is Materials Science and Engineering? Classification of Materials. Functional Classification of Materials. Classification of Materials Based on Structure. Environmental and Other Effects. Materials Design and Selection.
2. ATOMIC STRUCTURE. 
The Structure of Materials: Technological Relevance. The Structure of the Atom. The Electronic Structure of the Atom. The Periodic Table. Atomic Bonding. Binding Energy and Interatomic Spacing. The Many Forms of Carbon: Relationships Between Arrangements of Atoms and Materials Properties.
3. ATOMIC AND IONIC ARRANGEMENTS. 
Short-Range Order versus Long-Range Order. Amorphous Materials. Lattice, Basis, Unit Cells, and Crystal Structures. Allotropic or Polymorphic Transformations. Points, Directions, and Planes in the Unit Cell. Interstitial Sites. Crystal Structures of Ionic Materials. Covalent Structures. Diffraction Techniques for Crystal Structure Analysis.
4. IMPERFECTIONS IN THE ATOMIC AND LONIC ARRANGEMENT.
Point Defects. Other Point Defects. Dislocations. Significance of Dislocations. Schmid?s Law. Influence of Crystal Structure. Surface Defects. Importance of Defects.
5. ATOM AND ION MOVEMENTS IN MATERIALS.
Applications of Diffusion. Stability of Atoms and Ions. Mechanisms for Diffusion. Activation Energy for Diffusion. Rate of Diffusion [Fick?s First Law]. Factors Affecting Diffusion. Permeability of Polymers. Composition Profile [Fick?s Second Law]. Diffusion and Materials Processing.
6. MECHANICAL PROPERTIES: PART ONE. 
Technological Significance. Terminology for Mechanical Properties. The Tensile Test: Use of the Stress Strain Diagram. Properties Obtained from the Tensile Test. True Stress and True Strain. The Bend Test for Brittle Materials. Hardness of Materials. Nanoindentation. Strain Rate Effects and Impact Behavior. Properties Obtained from the Impact Test. Bulk Metallic Glasses and Their Mechanical Behavior. Mechanical Behavior at Small Length Scales. Rheology of Liquids.
7. MECHANICAL PROPERTIES: PART TWO.
Fracture Mechanics. The Importance of Fracture Mechanics. Microstructural Features of Fracture in Metallic Material. Microstructural Features of Fracture in Ceramics, Glasses, and Composites. Weibull Statistics for Failure Strength Analysis. Fatigue. Results of the Fatigue Test. Application of Fatigue Testing. Creep, Stress Rupture, and Stress Corrosion. Evaluation of Creep Behavior. Use of Creep Data. 
8. STRAIN HARDENING AND ANNEALING. 
Relationship of Cold Working to the Stress Strain Curve. Strain-Hardening Mechanisms. Properties versus Percent Cold Work. Microstructure, Texture Strengthening, and Residual Stresses. Characteristics of Cold Working. The Three Stages of Annealing. Control of Annealing. Annealing and Materials Processing. Hot Working. 
9. PRINCIPLES OF SOLIDIFICATION. 
Technological Significance. Nucleation. Applications of Controlled Nucleation. Growth Mechanisms. Solidification Time and Dendrite Size. Cooling Curves. Cast Structure. Solidification Defects. Casting Processes for Manufacturing Component. Continuous Casting and Ingot Casting. Directional Solidification [DS], Single Crystal Growth, and Epitaxial Growth. Solidification of Polymers and Inorganic Glasses. Joining of Metallic Materials.
10. SOLID SOLUTIONS AND PHASE EQUILIBRIUM.
Phases and the Phase Diagram. Solubility and Solid Solutions. Conditions for Unlimited Solid Solubility. Solid-Solution Strengthening. Isomorphous Phase Diagrams. Relationship Between Properties and the Phase Diagram. Solidification of a Solid-Solution Alloy. Nonequilibrium Solidification and Segregation.
11. DISPERSION STRENGTHENING AND EUTECTIC PHASE DIAGRAMS. 
Principles and Examples of Dispersion Strengthening. Intermetallic Compounds. Phase Diagrams Containing Three-Phase Reactions. The Eutectic Phase Diagram. Strength of Eutectic Alloys. Eutectics and Materials Processing. Nonequilibrium Freezing in the Eutectic System. Nanowires and the Eutectic Phase Diagram. 12. DISPERSION STRENGTHENING BY PHASE TRANSFORMATIONS AND HEAT TREATMENT. 
Nucleation and Growth in Solid-State Reactions. Alloys Strengthened by Exceeding the Solubility Limit. Age or Precipitation Hardening and Its Applications. Microstructural Evolution in Age or Precipitation Hardening. Effects of Aging Temperature and Time. Requirements for Age Hardening. Use of Age-Hardenable Alloys at High Temperatures. The Eutectoid Reaction. Controlling the Eutectoid Reaction. The Martensitic Reaction and Tempering. The Shape-Memory Alloys [SMAs].  
13.HEAT TREATMENT OF STEELS AND CAST IRONS. 
Designations and Classification of Steels. Simple Heat Treatments. Isothermal Heat Treatments. Quench and Temper Heat Treatments. Effect of Alloying Elements. Application of Hardenability. Specialty Steels. Surface Treatments. Weldability of Steel. Stainless Steels.  Cast Irons.
14. NONFERROUS ALLOYS.  
Aluminum Alloys. Magnesium and Beryllium Alloys. Copper Alloys. Nickel and Cobalt Alloys. Titanium Alloys. Refractory and Precious Metals.  
15. CERAMICS. 
Bonding in Ceramics. Structures of Crystalline Ceramics. Defects in Crystalline Ceramics.  Flaws in Ceramics. Synthesis and Processing of Crystalline Ceramics. Silica and Silicate Compounds. Inorganic Glasses. Glass-Ceramics. Processing and Applications of Clay Products. Refractories. Other Ceramic Materials. 
16. POLYMERS. 
Classification of Polymers. Addition and Condensation Polymerization. Degree of Polymerization. Typical Thermoplastics. Structure?Property Relationships in Thermoplastics. Effect of Temperature on Thermoplastics. Mechanical Properties of Thermoplastics. Elastomers [Rubbers]. Thermosetting Polymers. Adhesives. Polymer Processing and Recycling.  
17. COMPOSITES: TEAMWORK AND SYNERGY IN MATERIALS.  
Dispersion-Strengthened Composites. Particulate Composites. Fiber-Reinforced Composites. Characteristics of Fiber-Reinforced Composites. Manufacturing Fibers and Composites. Fiber-Reinforced Systems and Applications. Laminar Composite Materials. Examples and Applications of Laminar Composites. Sandwich Structures.  
18. CORROSION AND WEAR.  
Chemical Corrosion. Electrochemical Corrosion. The Electrode Potential in Electrochemical Cells. The Corrosion Current and Polarization. Types of Electrochemical Corrosion. Protection Against Electrochemical Corrosion. Microbial Degradation and Biodegradable Polymers. Oxidation and Other Gas Reactions. Wear and Erosion.  
Appendix A: Selected Physical Properties of Metals.
Appendix B: The Atomic and lonic Radii of Selected Elements.
Answers to Selected Problems.

This text provides students with a solid understanding of the relationship between structure, processing and properties of materials. It covers fundamentals in an integrated approach that emphasizes applications of new technologies enabled by engineered materials. Help your students understand the science of materials in order to select and deploy materials as responsible engineers with Askeland/Wright's Essentials of materials science and engineering, 4th edition. Your students develop a foundational understanding of why materials behave the way they do, and how they are best used in actual engineering practice. Students learn why materials display certain properties as they study how the structure and processing of materials results in these properties. The authors link fundamental concepts to practical applications, emphasizing the necessary basics without overwhelming readers with too much underlying chemistry or physics. This presentation is ideal for an introductory science of materials class taught at the sophomore or junior level and assumes knowledge of first-year courses in college-level chemistry and physics.

There are no comments for this item.

to post a comment.