000 03715cam a2200397 a 4500
999 _c58906
_d58906
001 12754456
003 CITU
005 20240507175338.0
008 020425s2003 maua b 001 0 eng
010 _a 2002070890
020 _a0072424346 (acidfree paper)
020 _a9780072424348
020 _a9780071237307
040 _aCITU LRAC
_cDLC
_dDLC
_beng
041 _aeng
050 0 0 _aQA39.3
_b.R67 2003
082 0 0 _a511
_221
100 1 _aRosen, Kenneth H.
_eauthor
245 1 0 _aDiscrete mathematics and its applications /
_cKenneth H. Rosen.
250 _aFifth edition
264 1 _aBoston :
_bMcGraw-Hill,
_cc2003.
300 _axxi, 787, 9, 8, 83, 1, 18 pages :
_billustrations (some color.) ;
_c26 cm.
336 _2rdacontent
_atext
_btxt
337 _2rdamedia
_aunmediated
_bn
338 _2rdacarrier
_avolume
_bnc
504 _aIncludes bibliographic references (p. 1-8, 4th set) and indexes.
505 _aThe foundations: logic and proof, sets, and functions : Logic ; Propositional equivalences ; Predicates and quantifiers ; Nested quantifiers ; Methods of proof ; Sets ; Set operations ; Functions -- The fundamentals: algorithms, the integers, and matrices : Algorithms ; The growth of functions ; Complexity of algorithms ; The integers and division ; Applications of number theory ; Matrices -- Mathematical reasoning, induction, and recursion : Proof strategy ; Sequences and summations ; Mathematical induction ; Recursive definitions and structural induction ; Recursive algorithms ; Program correctness -- Counting : The basics of counting ; The pigeonhole principle ; Permutations and combinations ; Binomial coefficients ; Generalized permutations and combinations ; Generating permutations and combinations -- Discrete probability : An introduction to discrete probability ; Probability theory ; Expected value and variance -- Advanced counting techniques : Recurrence relations ; Solving recurrence relations ; Divide-and-conquer algorithms and recurrence relations ; Generating functions ; Inclusion-exclusion ; Applications of inclusion-exclusion -- Relations : Relations and their properties ; n-ary relations and their applications ; Representing relations ; Closures of relations ; Equivalence relations ; Partial orderings -- Graphs : Introduction to graphs ; Graph terminology ; Representing graphs and graph isomorphism ; Connectivity ; Euler and Hamilton paths ; Shortest-path problems ; Planar graphs ; Graph coloring -- Trees : introduction to trees ; Applications of trees ; Tree traversal ; Spanning trees ; Minimum spanning trees -- Boolean algebra : Boolean functions ; Representing Boolean functions ; Logic gates ; Minimization of circuits -- Modeling computation : Languages and grammars ; Finite-state machines with output ; Finite-state machines with no output ; Language recognition ; Turing machines -- Appendixes : A.1. Exponential and logarithmic functions ; A.2. Pseudocode.
520 _a[This text] is appropriate for a one- or two-term introductory discrete mathematics course to be taken by students in a wide variety of majors, including computer science, mathematics, and engineering. College Algebra is the only explicit prerequisite.-Pref.
650 0 _aMathematics.
650 0 _aComputer science
_xMathematics.
856 4 1 _3Table of contents
_uhttp://www.loc.gov/catdir/toc/mh031/2002070890.html
856 4 2 _3Publisher description
_uhttp://www.loc.gov/catdir/description/mh024/2002070890.html
906 _a7
_bcbc
_corignew
_d1
_eocip
_f20
_gy-gencatlg
942 _2ddc
_cBK
_02